Abstract

This study examines the simultaneous allocation of berths and quay cranes under discrete berth situations with uncertainty at container terminals. First, a mixed-integer programming model that considers practical constraints with the objective of minimizing the baseline cost is formulated to obtain a baseline schedule. However, in reality, different disruptions, i.e., deviation of vessels’ arrival times, deviation of vessels’ loading and unloading operation times, calling of unscheduled vessels, and breakdown of quay cranes, will occur when executing the baseline schedule. Thereby, a reactive strategy, which takes the baseline schedule as a reference and aims to minimize the recovery cost, is proposed. Given that the cost value cannot simulate the choices of decision makers in reality, a behavior perception-based disruption model is proposed to effectively simulate a practical situation. A rolling horizon heuristic is presented to derive good feasible solutions. Computational tests are reported to show (i) the effectiveness of the proposed approach to solve a set of real instances to optimality; and (ii) the performance of proposed reactive strategy to conduct different disruptions; (iii) the comparisons between the proposed reactive strategy and proactive strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.