Abstract

TiO2 is a large bandgap chemically stable oxide useful for several applications that involve photo-activated processes, including photocatalysis, photovoltaics, photoelectrolysis, etc. However, the large band gap renders this material not a very efficient absorber of the solar spectrum. Various schemes of cation and anion doping have been utilized that reduce this deficiency to a certain extent. In this paper we present the results of N–C codoping of TiO2 thin films deposited by a reactive pulsed laser deposition technique. These films were compared for their optical and structural properties with undoped, N doped and C doped TiO2 films prepared by the same technique. While all samples contained polycrystalline anatase phase, varying N2 and CH4 partial pressures resulted in change in TiO2 lattice parameters due to codoping. X-ray diffraction high-resolution scans show the evidence of C incorporation into TiO2 lattice by 2θ shift in (101) reflections due to large ionic radius of C. N doping was confirmed by XPS analyses. Direct relationship between oxygen vacancies and doping concentration was established by the deconvolution of XPS peaks. Considerable bandgap reduction occurred that was measured by using UV–vis diffuse reflectance spectroscopy. Results show that reactive pulsed laser deposition is indeed a useful method for the synthesis of codoped TiO2 thin films as bandgap reduction of ~1.00eV via N–C codoping was successfully achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.