Abstract

NiAl have been fabricated by reactive sintering compacts of ball-milled powder mixtures containing Ni and Al. The reaction mechanism, as well as phase and microstructural development, were investigated by analyzing compacts quenched from different temperatures during reactive hot compaction. It was found that the reaction process was strongly affected by pressure, heating rates, heat loss from the sample to the environment. The application of 50 MPa prior to the reaction resulted in the intermetallic-formation reaction initiating at a temperature (480°C) much lower than that (∼550°C) when no pressure was applied. At high heating rate (50°C/min), when the heat loss is small, the formation of NiAl occurs rapidly via combustion reaction. On the other hand, if the heat loss is significant as in slow heating rate (10°C/min), the reaction process is controlled by solid-state diffusion. The phase formation sequence for the slow solid-state reaction was determined to be: NiAl3→ Ni2Al3→ NiAl → NiAl (Al-rich) + Ni3Al → NiAl.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call