Abstract

Voltage violation problems caused by high photovoltaic (PV) penetration in distribution systems can be mitigated if PVs are properly operated by the distribution system operator (DSO). However, PV resources are usually reluctant to provide reactive power support due to the absence of an incentive mechanism. Here, we design a reactive power market mechanism to unlock the potential of PV resources to provide reactive power support. We then develop an iterative algorithm to calculate the Nash equilibrium of the proposed market. The market concentration is further quantified to demonstrate its applicability in different power distribution systems. Case studies show that the proposed market can be applied to large power distribution systems with multiple PV resources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.