Abstract
We have investigated reactive phase formation in magnetron sputter-deposited NiyAl multilayer films with a 1 : 3 molar ratio and various periodicities, L, ranging from 320 nm down to a codeposited film with zero effective periodicity. The films were studied by x-ray diffraction, differential scanning calorimetry, electrical resistance measurements, and transmission electron microscopy. We find that Ni and Al have reacted during deposition to form the B2 NiAl phase and an amorphous phase. The formation of these phases substantially reduces the driving force for subsequent reactions and explains why nucleation kinetics become important for these reactions. Depending on the periodicity, these reactions result in the formation of NiAl3 or Ni2Al9 followed by NiAl3. Detailed calorimetric analysis reveals differences in the nucleation and growth behavior of NiAl3 compared with other studies.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have