Abstract
The objective of this study was to determine chemiluminescence (CL) antioxidant activities and neuroprotective effects of astaxanthin, beta-carotene (β-carotene), and canthaxanthin on undifferentiated rat pheochromocytoma (PC12) cells. We performed three CL antioxidant assays, and the three carotenoids showed varying degrees of antioxidant activity, with astaxanthin exhibiting the highest antioxidant activity than the other two samples. Results of a pyrogallol-luminol assay revealed β-carotene to have higher antioxidant activity than canthaxanthin, whereas cupric sulfate-Phen-Vc-hydrogen peroxide (H₂O₂) assay showed canthaxanthin to have higher antioxidant activity than β-carotene. Luminol-H₂O₂ assay showed the antioxidant activity series as canthaxanthin > β-carotene at 62.5-1000 μg/mL and β-carotene > canthaxanthin at 1000-4000 μg/mL. Astaxanthin exhibited partial neuroprotective activity against H₂O₂ and the strongest neuroprotective activity against amyloid beta-peptide(25-35) [(Aβ)(25-35)]-induced undifferentiated PC12 cell deaths at 0.5-5.0 μM. Canthaxanthin showed partial neuroprotective activity in Aβ(25-35)-induced undifferentiated PC12 cell deaths at 1.0-5.0 μM. Astaxanthin protected undifferentiated PC12 cells from the damaging effects of H₂O₂ and Aβ(25-35) by the following ways: (1) scavenging superoxide anion radicals, hydroxyl radicals, and H₂O₂; (2) securing cell viability; (3) suppressing the production of reactive oxygen species; and (4) eliminating calcium ion influx. Our results conclusively show that astaxanthin has the merit as a potential neuron protectant.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have