Abstract
Apoptosis-inducing factor (AIF)-deficient harlequin (Hq) mice undergo neurodegeneration associated with a 40–50% reduction in complex I level and activity. We tested the hypothesis that AIF and complex I regulate reactive oxygen species (ROS) production by brain mitochondria. Isolated Hq brain mitochondria oxidizing complex I substrates displayed no difference compared to wild type (WT) in basal ROS production, H 2O 2 removal, or ROS production stimulated by complex I inhibitors rotenone or 1-methyl-4-phenylpyridinium. In contrast, ROS production caused by reverse electron transfer to complex I was attenuated by ∼50% in Hq mitochondria oxidizing the complex II substrate succinate. Basal and rotenone-stimulated rates of H 2O 2 release from in situ mitochondria did not differ between Hq and WT synaptosomes metabolizing glucose, nor did the level of in vivo oxidative protein carbonyl modifications detected in synaptosomes, brain mitochondria, or homogenates. Our results suggest that AIF does not directly modulate ROS release from brain mitochondria. In addition, they demonstrate that in contrast to ROS produced by mitochondria oxidizing succinate, ROS release from in situ synaptosomal mitochondria or from isolated brain mitochondria oxidizing complex I substrates is not proportional to the amount of complex I. These findings raise the important possibility that complex I contributes less to physiological ROS production by brain mitochondria than previously suggested.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.