Abstract

The vicious cycle theory postulates that typical mitochondrial DNA (mtDNA) mutations cause their host mitochondria to generate more superoxide and other reactive oxygen species (ROS) than do normal mitochondria, thereby promoting the occurrence of additional mtDNA mutations at an ever-accelerating rate. However, nearly all the loss-of-function mtDNA mutations seen in vivo are large deletions, which (as the original statement of the theory indeed noted, though this has been widely overlooked) should not trigger a vicious cycle because they will prevent the assembly of the potentially superoxide-generating enzyme complexes. Consistent with this is the observation that each cell exhibiting loss of mtDNA-encoded function in vivo contains copies of a single, evidently clonally expanded, mutant mtDNA species, whereas the vicious cycle theory predicts a spectrum of mutant forms in each cell. Two recent papers, however, unveil a way in which mtDNA mutations could indeed promote ROS production of their host mitochondria. MtDNA mutations probably shift the intramitochondrial NAD(+)/NADH redox couple towards NADH, and this is now shown in vitro to cause ROS production by alpha-ketoglutarate dehydrogenase, an essential enzyme of the TCA cycle. This does not revive the vicious cycle theory, but it has complex implications for the two most plausible more recent theories, known as "survival of the slowest" and "crippled mitochondria." It may also prove to explain other recent observations in mitochondrially mutant cells in vivo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.