Abstract

We tested if there is a direct relationship between reactive oxygen species and citric acid-induced airway constriction. Guinea pigs were divided into two groups: control and dimethylthiourea (a hydroxyl radical scavenger). The animals in each group were further separated into four subgroups: baseline, recovery 2–3 min, recovery 10 min, and recovery 20 min. Each animal was anesthetized, cannulated, paralyzed, and artificially ventilated. Citric acid aerosol inhalation caused the following significant changes in the control group during the recovery period: airway constriction for at least 20 min, increases in luminol-amplified t-butyl hydroperoxide-initiated chemiluminescence counts in the bronchoalveolar lavage samples at 2–3 and 20 min, an increase in bronchoalveolar lavage fluid substance P level at 2–3 min, and elevations in the bronchoalveolar lavage fluid total cell and neutrophil numbers at 20 min. All citric acid-induced alterations were prevented by dimethylthiourea pretreatment. These results suggest that citric acid inhalation induces the initial release of reactive oxygen species and tachykinins, which causes further cellular infiltration and sustained airway constriction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.