Abstract

Reactive oxygen species (ROS), including superoxide anions, play an important role in mediating acute lung injury. We examined whether polyethylene glycol-conjugated superoxide dismutase (PEG-SOD) attenuates lung injury in Escherichia coli-treated guinea pigs. Twenty-four guinea pigs were divided into four groups: (1) control group; (2) septic group, in which live E. coli (2 x 10(9)/kg) were injected intravenously; (3) pretreatment group, in which PEG-SOD (2,000 IU/kg) was injected intravenously 15 min before E. coli; and (4) posttreatment group, in which PEG-SOD (2,000 IU/kg) was injected intravenously 30 min after E. coli. Lung injury was assessed by the concentration ratio of 125I-labeled albumin in lung tissue and bronchoalveolar lavage (BAL) fluid relative to plasma (L/P and BAL/P), lung wet-to-dry weight ratio, and the number of neutrophils in BAL fluid. Plasma half-life of PEG-SOD in normal guinea pigs was 13.5 h. L/P, lung wet-to-dry weight ratio, and the number of neutrophils in BAL fluid decreased in both pretreatment and posttreatment groups compared with the septic group. BAL/P decreased in the pretreatment group but not in the posttreatment group compared with the septic group. After the animal model studies, we investigated the effect of PEG-SOD on the human neutrophil extracellular generation of ROS stimulated by phorbol myristate acetate (PMA) in lucigenin-dependent chemiluminescence (CL). PEG-SOD at concentrations greater than or equal to 0.1 U/ml inhibited PMA-induced CL in a dose-dependent manner. We also examined the effect of PEG-SOD on the neutrophil intracellular generation of ROS using flow cytometry to assess intracellular hydroethidine oxidation.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call