Abstract

Helium produces preconditioning by activating prosurvival kinases, but the roles of reactive oxygen species (ROS) or mitochondrial adenosine triphosphate-regulated potassium (K(ATP)) channels in this process are unknown. The authors tested the hypothesis that ROS and mitochondrial K(ATP) channels mediate helium-induced preconditioning in vivo. A randomized, prospective study. A university research laboratory. Male New Zealand white rabbits. Rabbits (n = 64) were instrumented for the measurement of systemic hemodynamics and subjected to a 30-minute left anterior descending coronary artery (LAD) occlusion and 3 hours of reperfusion. In separate experimental groups, rabbits (n = 7 or 8 per group) were randomly assigned to receive 0.9% saline (control) or 3 cycles of 70% helium-30% oxygen administered for 5 minutes interspersed with 5 minutes of an air-oxygen mixture before LAD occlusion with or without the ROS scavengers N-acetylcysteine (NAC; 150 mg/kg) or N-2 mercaptoproprionyl glycine (2-MPG; 75 mg/kg), or the mitochondrial K(ATP) antagonist 5-hydroxydecanoate (5-HD; 5 mg/kg). Statistical analysis of data was performed with analysis of variance for repeated measures followed by Bonferroni's modification of a Student t test. The myocardial infarct size was determined by using triphenyltetrazolium chloride staining and presented as a percentage of the left ventricular area at risk. Helium significantly (p < 0.05) reduced infarct size (23 +/- 4% of the area at risk; mean +/- standard deviation) compared with control (46 +/- 3%). NAC, 2-MPG, and 5-HD did not affect irreversible ischemic injury when administered alone (49 +/- 5%, 45 +/- 6%, and 45 +/- 3%), but these drugs blocked reductions in infarct size produced by helium (45 +/- 4%, 45 +/- 2%, and 44 +/- 3%). The results suggest that ROS and mitochondrial K(ATP) channels mediate helium-induced preconditioning in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.