Abstract

We develop the geometrical, analytical, and computational framework for reactive island theory for three degrees-of-freedom time-independent Hamiltonian systems. In this setting, the dynamics occurs in a 5-dimensional energy surface in phase space and is governed by four-dimensional stable and unstable manifolds of a three-dimensional normally hyperbolic invariant sphere. The stable and unstable manifolds have the geometrical structure of spherinders and we provide the means to investigate the ways in which these spherinders and their intersections determine the dynamical evolution of trajectories. This geometrical picture is realized through the computational technique of Lagrangian descriptors. In a set of trajectories, Lagrangian descriptors allow us to identify the ones closest to a stable or unstable manifold. Using an approximation of the manifold on a surface of section we are able to calculate the flux between two regions of the energy surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.