Abstract

Gas atomization reaction synthesis was employed as a simplified method for processing oxide dispersion forming precursor Fe-based powders (e.g., Fe–Cr–Y–Hf). During this process a reactive atomization gas (i.e., Ar–O2) was used to oxidize the powder surfaces during primary break-up and rapid solidification of the molten alloy. This resulted in envelopment of the powders by an ultra-thin (t<50nm) metastable Cr-enriched oxide shell that was used as a vehicle to transport oxygen into the consolidated microstructure. Subsequent elevated temperature heat treatment promoted thermodynamically driven oxygen exchange reactions between trapped films of Cr-enriched oxide and internal (Y, Hf)-enriched intermetallic precipitates, resulting in highly stable nano-metric mixed oxide dispersoids (i.e., Y–Hf–O) that were identified with X-ray diffraction. Transmission electron microscopy and atom probe tomography results also revealed that the size and distribution of the dispersoids were found to depend strongly on the original rapidly solidified microstructure. To exploit this, several oxide dispersion strengthened microstructures were engineered from different powder particle size ranges, illustrating microstructural control as a function of particle solidification rate. Additionally, preliminary thermal–mechanical processing was used to develop a fine scale dislocation substructure for ultimate strengthening of the alloy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.