Abstract

Herein, the phase evolution, densification and grain growth process of the high entropy ceramics during flash sintering were systematically characterized and quantified to understand the microstructural evolution for the first time. It was demonstrated that the densification rate of (La0.2Nd0.2Sm0.2Eu0.2Gd0.2)2Zr2O7 by flash sintering in this work was generally around 60 times that of conventional sintering at 1600 °C, while the grain growth rate by flash sintering was only around 1.5–6 times that of conventional sintering, indicating that grain growth was suppressed during flash sintering. The grain growth mechanisms by flash sintering and conventional sintering could be both attributed to surface diffusion and volume diffusion. In addition, the flash sintered high-entropy ceramics as promising immobilization materials for high-level radioactive waste (HLW) exhibited excellent aqueous durability with normalized leaching rates of Nd, Gd and Zr approximately 10−6∼10−7 g m−2 d−1 after 42 days, which were much lower than most reported pyrochlore materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call