Abstract

The reactive type flame retardants have been applied in rigid polyurethane foams (RPUF) owing to their excellent durability and minimal negative effect on the physical properties, however, their flame retardant efficiency cannot meet the requirements in many practical application scenarios. In this work, two reactive-type flame retardants with several hydroxyl groups were synthesized by a solvent-free transesterification between erythritol and dimethyl methyl phosphonate (DMMP), and they were then introduced into RPUF by reacting with isocyanate respectively. The flammability of the as-prepared RPUF samples was evaluated by limiting oxygen index (LOI) and cone calorimeter tests. With the presence of 10 phr as prepared flame retardant, the LOI value of RPUF was improved from 18.3% to 29.8%, and the peak heat release rate (pHRR) and total heat release (THR) were reduced by 31.4% and 47.8% respectively in contrast to that of control RPUF. Furthermore, the compressive strength and thermal conductivity of RPUF containing reactive flame retardants were similar to those of control RPUF. This study provides an innovative method for the clean production of commercial RPUF with fire safety by using a modified phosphorus ester.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call