Abstract

AbstractGlycidol modified polylactic acid (PLLA) polymers have been prepared by reactive extrusion. Influences of residence time and the concentration of glycidol on the extent of reaction with different weight average molecular weight (45,000, 65,000, and 100,000) PLLA's were studied. Structure–property relationship has been established by measuring molecular, mesoscopic, and macroscopic properties. Under reactive extrusion conditions glycidol reacted with the end groups of PLLA to initiate chain extension. Low‐molecular weight PLLA reacted with glycidol faster than the medium molecular weight PLLA, whereas high‐molecular weight PLLA did not show significant reactions. The glass transition temperature, melting temperature, crystallization temperature, and heat of fusion were measured for unmodified and modified PLLA's. Chain extended PLLA had higher Tg and Tm than the unmodified samples. Time sweep rheological experiments were performed to test the melt stability of PLLA. Chain extended PLLA's were found to retain viscoelastic properties for much longer time than the unreacted samples. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.