Abstract

The investigation was undertaken to evaluate the wear behavior of basalt fiber and sisal fiber reinforced polylactic acid PLA composites. Basalt saline-treated chopped fiber and treated sisal chopped fiber were alloyed with polylactic acid and the samples were obtained using an injection mold in a twin-screw extruder. Three weight fraction samples were prepared, namely PBSi-1 (90% by weight polylactic acid, 5% by weight basalt and 5% by weight sisal), PBSi-2 (85% by weight polylactic acid, 7.5% by weight basalt and 7.5% by weight sisal) and PBSi-3 (80% by weight polylactic acid, 10% by weight basalt and 10% by weight sisal). The wear behavior of the prepared specimen were determined using a Pin-on-disc. The wear loss was measured at four different loads (10 N, 20 N, 30 N and 40 N) and four different sliding speeds (100 rpm, 150 rpm, 200 rpm and 250). The wear mechanism map was generated based on the wear regime nature using the Fuzzy Cluster C-means algorithm. The PBSi-3 composite showed a more mild wear regime than the severe and ultra-severe wear, due to the increase in the basalt and sisal fiber content within the composite that results in an increase of hardness and wear resistance. The predominant mechanism observed in the SEM image of PBSi-3 composite is ironing, which indicates the lesser wear occurrence in the composite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call