Abstract

AbstractAcid dyes are employed for commercially dyeing silk, which results in ionic bonds between the silk fibroin and the dye. This generally leads to low wet fastness properties for dyed silk fabrics. In this work, three commercial acid dyes with aromatic primary amine structures were selected to dye silk using a Mannich‐type reaction, resulting in improved wet fastness of dyed silk by forming covalent bonds between silk fibroin and dye. The Mannich‐type reactive dyeing was applied to silk fabrics at both 30 and 90°C in trials. Dyeing at 90°C can shorten the dyeing time compared with dyeing at 30°C, even although dye exhaustion and relative fixation at 90°C were a little lower. The dyeing process was optimised when the dyeing temperature was 90°C, dyebath pH 4, dye‐to‐formaldehyde ratio 1:30 and holding dyeing time 60 minutes. The results showed that the dye exhaustion on silk fabrics for the three aromatic primary amine‐containing acid dyes exceeded 94% and their relative fixation was over 80%. Their washing and rubbing fastness reached grade 4 or higher. Hence, the colour fastness properties of dyed silk fabrics using the Mannich‐type reactive dyeing method is superior to the conventional acid dyeing method using the same aromatic primary amine‐containing acid dyes. The Mannich‐type reactive dyeing for silk fabrics at 90°C can be developed into a novel and rapid reactive dyeing method, promising an effective dyeing process with excellent colour fastness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call