Abstract

Metabolic shift is an important contributory factor for progression of hypertension-induced left ventricular hypertrophy into cardiac failure. Under hypertrophic conditions, heart switches its substrate preference from fatty acid to glucose. Prolonged dependence on glucose for energy production has adverse cardiovascular consequences. It was reported earlier that reactivation of fatty acid metabolism with medium chain triglycerides ameliorated cardiac hypertrophy, oxidative stress and energy level in spontaneously hypertensive rat. However, the molecular mechanism mediating the beneficial effect of medium chain triglycerides remained elusive. It was hypothesized that reduction of cardiomyocyte hypertrophy by medium chain fatty acid (MCFA) is mediated by modulation of signaling pathways over expressed in cardiac hypertrophy. The protective effect of medium chain fatty acid (MCFA) was evaluated in cellular model of myocyte hypertrophy. H9c2 cells were stimulated with Arginine vasopressin (AVP) for the induction of hypertrophy. Cell volume and secretion of brain natriuretic peptide (BNP) were used for assessment of cardiomyocyte hypertrophy. Cells were pretreated with MCFA (Caprylic acid) and metabolic modulation was assessed from the expression of medium-chain acyl-CoA dehydrogenase (MCAD), cluster of differentiation-36 (CD36) and peroxisome proliferator-activated receptor (PPAR)-α mRNA. The signaling molecules modified by MCFA was evaluated from protein expression of mitogen activated protein kinases (MAPK: ERK1/2, p38 and JNK) and Calcineurin A. Pretreatment with MCFA stimulated fatty acid metabolism in hypertrophic H9c2, with concomitant reduction of cell volume and BNP secretion. MCFA reduced activated ERK1/2, JNK and calicineurin A expression mediated by AVP. In conclusion, the beneficial effect of MCFA is possibly mediated by stimulation of fatty acid metabolism and modulation of MAPK and Calcineurin A.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.