Abstract
Multi-threshold CMOS (MTCMOS) is commonly used for suppressing leakage currents in idle integrated circuits. Power and ground distribution network noise produced during SLEEP to ACTIVE mode transitions is an important reliability concern in MTCMOS circuits. Sleep signal slew rate modulation techniques for suppressing mode-transition noise are explored in this paper. A triple-phase sleep signal slew rate modulation (TPS) technique with a novel digital sleep signal generator is proposed. Reactivation time, mode-transition energy consumption, leakage power consumption, and layout area of different MTCMOS circuits are characterized under an equal-noise constraint. Influences of within-die and die-to-die parameter variations on the reactivation noise, time, and energy consumption of sleep signal slew rate modulated MTCMOS circuits are evaluated with a process imperfections aware robustness metric. The proposed triple-phase sleep signal slew rate modulation technique enhances the tolerance to process parameter fluctuations by up to <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$183.1\times$</tex></formula> as compared to various alternative MTCMOS noise suppression techniques in a UMC 80-nm CMOS technology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Very Large Scale Integration (VLSI) Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.