Abstract

We will introduce some new results derived recently by the nuclear reaction group at China Institute of Atomic Energy, on the properties of the optical model potentials of neutron-halo 6He system and reaction mechanisms induced by proton-drip line nucleus 17F at energies around the Coulomb barrier. For the study of optical model potentials of exotic nuclear system, we proposed a novel method, i.e., the transfer reaction method. This method has been applied to extract the optical potentials of neutron-halo 6He+209Bi system by measuring the one-proton transfer reactions induced by 7Li on a 208Pb target. A complete picture of threshold anomaly behavior was obtained in the 6He+209Bi system for the first time, where a decreasing trend of the depth of the imaginary potential is observed in the deep sub-barrier region, and the reaction threshold energy is extracted. Moreover, results show thatthe dispersion relation is not applicable for this exotic nuclear system. Reaction mechanisms of proton-rich nuclear systems 17F+89Y and 58Ni were also studied at energies around the Coulomb barrier. Continuum discretized coupled-channels calculations indicate that the coupling effects of the continuum states of 17F+89Y is not significant. Thanks to the employment of a powerful ionization-chamber based detector array, the reaction products over a large Z in the systems of 17F+58Ni can be identified clearly. The data analysis is undergoing.

Highlights

  • The availability of relatively intense Radioactive Ion Beams (RIBs) has caused a revival of interest in the nuclear physics

  • We will introduce some new results obtained by the nuclear reaction group at CIAE (China Institute of Atomic Energy) recently, on the properties of the optical model potential (OMP) of neutron-halo 6He systems and the reaction mechanisms induced by the proton-drip line nucleus 17F at energies around the Coulomb barrier

  • In view of this fact, we proposed a novel method, i.e., the transfer reaction method [9], to study the OMPs of exotic systems by the utilization of a stable beam

Read more

Summary

Introduction

The availability of relatively intense Radioactive Ion Beams (RIBs) has caused a revival of interest in the nuclear physics. For nuclear reactions at near- and sub-barrer energies, some surprising results in the elastic scattering, direct and fusion reactions induced by RIBs have been reported [1, 2]. These nuclei are often labelled as "exotic" because they have unusual properties, e.g., small separation energies for the valence particles, extensive matter distribution, exhibiting the halo/skin or cluster phenomena and so on. We will introduce some new results obtained by the nuclear reaction group at CIAE (China Institute of Atomic Energy) recently, on the properties of the OMPs of neutron-halo 6He systems and the reaction mechanisms induced by the proton-drip line nucleus 17F at energies around the Coulomb barrier

OMPs of neutron-halo 6He systems
Reaction mechanisms of 17F systems
Summary
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call