Abstract

AbstractThe nitrido complexes ReNCl2(PMe2Ph)3 and [OsO3N]— have strong basic terminal nitrido ligands which can react with Lewis acidic metal halides to form nitrido bridges. The synthesis and structure of complexes with ReNCl2(PMe2Ph)3 and nitrido bridges Re≡N‐M (M = B, Ga, Sn, Ti, Zr, V, Nb, Ta, Mo, Re, Pd, Au, and Zn) as well as of complexes with [OsO3N]— and nitrido bridges Os≡N‐M (M = Pd and Pt) are reported. Strong Lewis acids can also remove phosphine or chloro ligands from ReNCl2(PMe2Ph)3. The resulting complex fragments subsequently combine to yield oligomeric complexes with nitrido bridges Re≡N‐Re. If the reaction with strong Lewis acids is carried out in a chlorinated solvent the solvent can be decomposed to form HCl which then protonates the nitrido ligand affording an imido complex. [ReNCl4]— is able to form nitrido bridges to electrophilic halides if a donor ligand is coordinated in trans position to the nitrido ligand to enhance its basicity sufficiently. The synthesis and structure of examples with nitrido bridges Re≡N‐M (M = Pd, Pt, Ta) are reported.The chloro imido complex Cl3V≡N‐Cl can act as a nitride ion transfer reagent. Its reaction with MoCl5 yields Mo2NCl8 whereas with MoCl3 the nitride chlorides Mo3N2Cl11 and MoNCl3 are obtained. Cl3VNCl can also act as an reactive intermediate by the reaction of VN with a halide as was shown by the reaction of MoCl5 with VN yielding Mo2NCl7. The structures of these molybdenum nitride chlorides are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call