Abstract
The kinetics and mechanisms of the reactions of o-benzyne with propargyl and benzyl radicals have been investigated computationally. The possible reaction pathways have been explored by quantum chemical calculations at the M06-2X/6-311+G(3df,2p)//B3LYP/6-311G(d,p) level and the mechanisms have been investigated by the Rice-Ramsperger-Kassel-Marcus theory/master-equation calculations. It was found that the o-benzyne associates with the propargyl and benzyl radicals without pronounced barriers and the activated adducts easily isomerize to five-membered ring species. Indenyl radical and fluorene + H were predicted to be dominantly produced by the reactions of o-benzyne with propargyl and benzyl radicals, respectively, with the rate constants close to the high-pressure limits at temperatures below 2000 K. The related reactions on the two potential energy surfaces, namely, the reaction between fulvenallenyl radical and acetylene and the decomposition reactions of indenyl and α-phenylbenzyl radicals were also investigated. The high reactivity of o-benzyne toward the resonance stabilized radicals suggested a potential role of o-benzyne as a precursor of polycyclic aromatic hydrocarbons in combustion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.