Abstract

Experimental rate constants of the reactions HO· + CO → H· + CO2, RO· + CO → R· + CO2, HO2· + CO → HO· + CO2, and RO2· + CO → RO· + CO2 are analyzed in the framework of the intersecting-parabolas model. The transition states of the additions of the methoxy and methylperoxy radicals to carbon monoxide were calculated by quantum-chemical methods. The reactions occur in two consecutive steps: first the HO· (RO·, RO2·) radical adds to CO and then the resulting unstable intermediate radical decomposes to evolve CO2. The kinetic parameters of these reactions are calculated by two methods (using the intersecting-parabolas model and the quantum-chemical method). The activation energies and rate constants of a series of RiO· + CO and RiO2· + CO reactions are calculated. A comparison of the kinetic parameters suggests close similarity between the transition states in the additions of the O-centered radicals to CO and olefins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.