Abstract
The formation of peroxynitrates (RO2NO2) from the reaction of peroxy radicals (RO2) and nitrogen dioxide (NO2) and their subsequent redissociation are typically not included in chemical mechanisms. This is often done to save computational time as the assumption is that the equilibrium is strongly towards the RO2 + NO2 reaction for most conditions. Exceptions are the reactions of the methyl peroxy radical due to its abundance in the atmosphere and of acyl-RO2 radicals due to the long lifetime of peroxyacyl nitrates RO2NO2 (PANs). In this study, the nighttime oxidation of cis-2-butene and trans-2-hexene in the presence of NO2 is investigated in the atmospheric simulation chamber SAPHIR, Forschungszentrum Jülich, Germany, at atmospherically-relevant conditions at different temperatures (≈276 K, ≈293 K, ≈305 K). Measured concentrations of peroxy and hydroperoxy radicals as well as other trace gases (ozone, NO2, volatile organic compounds) are compared to state-of-the-art zero-dimensional box model calculations. Good model-measurement agreement can only be achieved when reversible RO2 + NO2 reactions are included for all RO2 species using literature values available from the latest SAR by [Jenkin et al., Atmos. Chem. Phys., 2019, 19, 7691]. The good agreement observed gives confidence that the SAR, derived originally for aliphatic RO2, can be applied to a large range of substituted RO2 radicals, simplifying generalised implementation in chemical models. RO2NO2 concentrations from non-acyl RO2 radicals of up to 2 × 10 cm-3 are predicted at 276 K, impacting effectively the kinetics of RO2 radicals. Under these conditions, peroxy radicals are slowly regenerated downwind of the pollution source and may be lost in the atmosphere through deposition of RO2NO2. Based on this study, 60% of RO2 radicals would be stored as RO2NO2 at a temperature of 10 °C and in the presence of a few ppbv of NO2. The fraction increases further at colder temperatures and/or higher NO2 mixing ratios. This does not only affect the expected concentrations of RO2 radicals but, as the peroxynitrates can react with OH radicals or photolyse, they could comprise a net sink for RO2 radicals as well as increase the production of NOx (= NO + NO2) in different locations depending on their lifetime. Omitting this chemistry from the kinetic model can lead to misinterpreted product formation and may prevent reconciling observations and model predictions.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have