Abstract

Tetrasilasilylone N is composed of a silicon(0) atom, two NHC-coordinated silylenes, and a silaimine (Si═N) group. It reacts rapidly and selectively with the chalcogens selenium and tellurium to afford corresponding dichalcogenides 1 and 2 in high yields of 69-79%. In these compounds, one chalcogen atom is connected to the silicon(0) atom with a short bond in the range of Si═E double bonds. The second chalcogen atom adopts the bridging position between the Si(0) atom and the Si═N group. Using only 1 equiv of tellurium affords the selective formation of monotelluride 3 in 84% yield. In this monotelluride, the tellurium atom adopts a bridging position between the silylone functionality and the Si═N group.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.