Abstract

The electrolyte effect has been key to the electrochemical CO2 reduction reaction (CO2RR) and has received extensive attention in recent years. Here we combined atomic force microscopy, quasi-in situ X-ray photoelectron spectroscopy, and in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) to study the effect of iodine anions on Cu-catalyzed CO2RR in the absence or presence of KI in the KHCO3 solution. Our results suggested that iodine adsorption caused coarsening of the Cu surface and altered its intrinsic activity for CO2RR. As the potential of the Cu catalyst became more negative, there was an increase in surface iodine anion concentration ([I-]), which could be connected to the reaction-enhanced adsorption of I- ions accompanying the increase in CO2RR activity. A linear relationship was observed between [I-] and current density. SEIRAS results further suggested that the presence of KI in the electrolyte strengthened the Cu-CO bond and facilitated the hydrogenation process, enhancing the production of CH4. Our results have thus provided insight into the role of halogen anions and aided in the design of an efficient CO2RR process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.