Abstract

Understanding fracture propagation in chemically active rock formations is of interest to several engineering and science disciplines. Fracture nucleation and growth governed by in-situ chemo-poro-mechanical processes is crucial, for instance, during the transformation of CO2 into solid carbonate rock. The process consists of injecting a non-resident mixed fluid phase of CO2 in water which dissolves parts of the fracture-porous medium system and precipitates secondary minerals, altering the solid’s porosity and permeability. Hence, dissolution/precipitation processes and concomitant solid weakening alter physico-chemical properties in the system, which in the presence of pore pressure changes, may facilitate and enhance fracture nucleation and growth. More importantly, the evolution of fracture networks in the rock determines fluid flow, which is crucial for progressing chemical processes such as ionic advection and diffusion. This study focuses on the complex chemo-hydro-mechanical responses in naturally fractured rock formations subject to acidic carbon water injection. We use a recently developed framework to incorporate the mechanisms of reactive transport, fluid flow and transport in porous media, and fracture propagation in poroelastic media. Due to the complexity of such coupled phenomena, few numerical modeling and experimental studies have been published in this area. Existing models often oversimplify the chemical interactions by using simplistic fitting functions. Contrary to these conventional approaches, the considered framework uses PHREEQC to estimate the localized chemical interactions for a general system. A key novelty of this study is in applying the considered framework to study CO2 injection into complex naturally fractured basalt formations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.