Abstract

We present a novel approach to model hydro-chemo-mechanical responses in rock formations subject to fracture propagation within chemically active rock formations. The framework developed integrates the mechanisms of reactive transport, fluid flow and transport in porous media, and phase-field modelling of fracture propagation in poroelastic media. The solution approach integrates the geochemical package PHREEQC with a finite-element open-source platform, FEniCs. The PHREEQC solver is used to calculate the localized chemical reaction, including solid dissolution/precipitation. The resulting solid weakening by chemical damage is estimated from the reaction-induced porosity change. The proposed coupled model was verified with previous numerical results and applied to a synthetic case exhibiting hydraulic fracturing enhanced with chemical damage. Simulation results suggest that mechanical failure could be accelerated in the presence of ongoing chemical processes due to rock weakening and porosity changes, allowing the nucleation, growth, and development of fractures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.