Abstract

The Ru(II) compounds [Ru(bpy)(2)(mcbH)](2+) and [Ru(bpy)(2)(dafo)](2+), bpy is 2,2'-bipyridine where mcbH is 3-(CO(2)H)-2,2'-bipyridine and dafo is 4,5-diazafluoren-9-one, were synthesized, characterized, and anchored to nanocrystalline mesoporous TiO(2) thin films for excited state and interfacial electron transfer studies. X-ray crystallographic studies of [Ru(bpy)(2)(mcbH)](PF(6))(Cl) revealed a long Ru-N distance to the unsubstituted pyridine ligand of mcbH. Reaction of [Ru(bpy)(2)(dafo)](2+) with TiO(2) thin films resulted in interfacial chemistry. The IR, (1)H NMR, UV-vis, and photoluminescence spectral data indicated a room-temperature ring-opening reaction of the dafo ligand of [Ru(bpy)(2)(dafo)](2+) that ultimately yielded a carboxylate group in the 3-position of bipyridine anchored to TiO(2). Comparative reactions of [Ru(bpy)(2)(mcbH)](2+) with TiO(2) were performed and support this conclusion. In regenerative photoelectrochemical solar cells with 0.5 M LiI/0.05 M I(2) in acetonitrile, photocurrent action spectra were observed for both sensitized materials. The incident photon-to-current efficiency (IPCE) was significantly lower for Ru(bpy)(2)(dafo)/TiO(2), behavior attributed to a lower excited-state injection yield.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.