Abstract

A mechanistic study on the partial oxidation of methane to synthesis gas (H2 and CO) was conducted with supported nickel catalysts. To investigate the reaction mechanism, pulse experiments, O2-TPD, and a comparison of the moles of reactants and products were carried out. From the O2-TPD experiment, it was observed that the active catalyst in the synthesis gas production desorbed oxygen at a lower temperature. In the pulse experiment, the temperature of the top of the catalyst bed increased with the pulses, whereas the temperature of the bottom decreased. This suggests that there are two kinds of reactions, that is, the total oxidation of methane (exothermic) at the top and reforming reactions (endothermic) at the bottom. From the comparison of the moles of reactants and products, it was found that the moles of CO2, CH4 and H2O decreased as the moles of H2 and CO increased. The results support the mechanism that synthesis gas is produced through a two-step reaction mechanism: the total oxidation of methane to CO2 and H2O takes place first, followed by the reforming reaction of the produced CO2 and H2O with residual CH4 to form synthesis gas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.