Abstract

In situ time-resolved FTIR spectroscopy was used to study the reaction mechanism of partial oxidation of methane (POM) to synthesis gas and the reaction of CH4/O2/He (2/1/45, molar ratio) gas mixture with adsorbed CO species over Rh/SiO2, Ru/γ-Al2O3 and Ru/SiO2 catalysts at 500-600℃. It was found that CO is the primary product of POM reaction over reduced and working state Rh/SiO2 catalysts. Direct oxidation of CH4 is the main pathway of synthesis gas formation over Rh/SiO2 catalyst. CO2 is the primary product of POM over Ru/γ-Al2O3 and Ru/SiO2 catalysts. The dominant reaction pathway for synthesis gas formation over Ru/γ-Al2O3 catalyst is via the reforming reactions of CH4 with CO2 and H2O. For the POM reaction over Rh/SiO2 and Ru/γ-Al2O3 catalysts, consecutive oxidation of surface CO species is an important pathway of CO2 formation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.