Abstract
The object of this study is overlay coatings of MCrAlY alloy sprayed by a vacuum plasma spray (VPS) process for the protection against high-temperature corrosion and oxidation in the field of gas turbine components. Reaction diffusion behaviors at the interface between the MCrAlY coatings and the substrate, which have an important effect on coating degradation, have not always been clarified. Three kinds of substrate, equiaxis IN738LC, directional solidified CM247LC and single-crystal CMSX-2, and the four kinds of vacuum plasma sprayed MCrAlY coating have been selected for these experiments. The experimental results showed that the reaction diffusion layers consisted of aluminum compound layer and aluminum depleted layer, excepting that the aluminum depleted layer could not be observed in the case of CoNiCrAlY and NiCoCrAlY coatings. It also indicated that the diffusion thickness could be observed to follow a parabolic time dependence. The order of reaction diffusion rate was NiCrAlY > CoCrAlY > CoNiCrAlY > NiCoCrAlY independent of the substrates. A convenient computer-aided system was developed for analyzing the reaction diffusion behaviors at the interface between coating and substrate. It was also clear that the estimated results of long time diffusion behaviors by simulation analysis was in good agreement with experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.