Abstract
Conditional pushdown systems (CPDSs) extend pushdown systems by associating each transition rule with a regular language over the stack alphabet. The goal is to model program verification problems that need to examine the runtime call stack of programs. Examples include security property checking of programs with stack inspection, compatibility checking of HTML5 parser specifications, etc. Esparza et al. proved that the reachability problem of CPDSs is EXPTIME-complete, which prevents the existence of an algorithm tractable for all instances in general. Driven by the practical applications of CPDSs, we study the reachability of patterned CPDS (pCPDS) that is a practically important subclass of CPDS, in which each transition rule carries a regular expression obeying certain patterns. First, we present new saturation algorithms for solving state and configuration reachability of pCPDSs. The algorithms exhibit the exponential-time complexity in the size of atomic patterns in the worst case. Next, we show that the reachability of pCPDSs carrying simple patterns is solvable in fixed-parameter polynomial time and space. This answers the question on whether there exist tractable reachability analysis algorithms of CPDSs tailored for those practical instances that admit efficient solutions such as stack inspection without exception handling. We have evaluated the proposed approach, and our experiments show that the pattern-driven algorithm steadily scales on pCPDSs with simple patterns.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have