Abstract
Durum wheat is an important crop worldwide. In many areas, durum wheat appears to have competitive yield and biotic and abiotic advantages over bread wheat. What limits durum production? In one respect, the comparatively more limited processing and food functionality. Two traits directly relate to these limitations: kernel texture (hardness) and gluten strength. We have addressed both using ph1b-mediated translocations from bread wheat. For kernel texture, ca. 28 Mbp of chromosome 5DS replaced about 20 Mbp of 5BS. SKCS hardness was reduced from ca. 80 to 20 as the puroindolines were expressed and softened the endosperm. Break flour yields increased from 17% to >40%. Straight-grade flour had low starch damage (2%), and a mean particle size of 75 µm. Crosses with CIMMYT durum lines all produced soft kernel progeny and a high degree of genetic variance for milling and baking quality. Solvent Retention Capacities (SRC) and cookie diameters were similar to soft white hexaploid wheat, showing that soft durum can be considered a “tetraploid soft white spring wheat”. Regarding gluten strength, CIMMYT durums contributed a high genetic variance, with the “best” progeny exhibiting SDS sedimentation volume, SRC Lactic Acid and Mixograph characteristics that were similar to medium-gluten strength U.S. hard red winter. The best loaf volume among these progeny was 846 cm3 at ca. 12.8% flour protein. To further address the issue of gluten strength, Soft Svevo was crossed with durum lines possessing Dx2+Dy12 and Dx5+Dy10. Bread baking showed that Dx5+Dy10 was overly strong, whereas Dx2+Dy12 significantly improved bread loaf volume. The best progeny produced a loaf volume of 1010 cm3 at 12.1% protein. As a comparison, the long-term in-house regression for loaf volume-flour protein for hard red ‘bread’ wheats is 926 cm3 at 12.1% protein. Obviously, from these results, excellent bread making potential has been achieved.
Highlights
High kernel hardness is a defining trait of durum wheat (Triticum turgidum subsp. durum) grain
The research reviewed here shows how both kernel texture and dough rheology can be manipulated via ph1b-mediated homoeologous recombination and the transfer of genetic material from bread wheat to durum wheat
Endosperm softness in wheat is controlled by the Puroinoline genes/proteins, Pina and Pinb, which reside at the Hardness (Ha) locus on the distal end of chromosome 5D short arm (5DS) (Morris, 2002; Bhave and Morris, 2008)
Summary
High kernel hardness (texture) is a defining trait of durum wheat (Triticum turgidum subsp. durum) grain. High kernel hardness (texture) is a defining trait of durum wheat Durum wheat lacks the D genome, and it lacks the Glu-D1 locus for the high molecular weight (HMW) glutenins Dx2+Dy12 and Dx5+Dy10. The elasticity and extensibility of durum doughs are often viewed as inferior to bread wheat (Triticum aestivum) (Ammar et al, 2000).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.