Abstract

Heterogeneities in the phosphorus (P) content of olivine are relatively resistant to diffusive homogenization when compared with other compositional heterogeneities. Thus, heterogeneities in the spatial distribution of P can preserve petrological information about olivine crystals from the earliest stages of crystallization which have been otherwise eliminated. However, compared to independent determinations of protracted cooling timescales in slowly cooled rocks, P enrichments are so sharp as to suggest a rate of diffusive mobility that is many orders of magnitude slower than previously suggested. Here, we heat single natural olivine crystals with sharply defined P heterogeneities (0.02 to 0.15 wt% P2O5 over 0.5 μm spatial scale) in a 1-atmosphere gas-mixing furnace for durations of 10 to 20 days at 1400°C, thus exposing them to conditions that should be sufficient for complete diffusive relaxation according to published P diffusivity values. However, high-precision chemical analysis of the same interior section before and after heating reveals no discernable difference in the sharpness of phosphorus concentration patterns. Therefore, diffusion chronometry applied to skeletal P enrichments in olivine currently provides erroneously short diffusive timescales. We discuss several possible causes for these discrepancies and the implications for diffusion chronometry as applied to phosphorus in olivine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.