Abstract
Mercury (Hg) emissions from point sources to air may disperse over long distance depending on Hg speciation in the plume. A significant fraction of Hg, particularly in its divalent forms, deposits locally and causes pollution to surrounding biomes. The objective of this study was to investigate (1) the historic Hg deposition to the immediate vicinity of an industrial complex that had intentional use of Hg (i.e., chlor-alkali and polyvinyl chloride production) for 5 decades until 2011, and (2) the Hg0 re-emission from soil to air soon after the closure of the facility. The spatial distribution of near-ground Hg0 vapor in air, soil Hg concentration and stable isotope ratio, air-soil Hg0 flux and Hg0 concentration in soil pore-gas were measured. It was found that the surrounding soils are severely contaminated with Hg due to the Hg release of the industrial complex, displaying soil Hg content up to 4.8 μg g−1. A spatial trend of Hg mass dependent isotope fractionation signature (δ202Hg = −2.11‰ to 0.72‰) with respect to the distance from the closed facility was identified, representing a mixing between regional background and industrial Hg sources. Hg release from the industrial operation enhanced surface soil Hg content within a 6.5-km radius from the facility. Inside the facility, residual Hg wastes (i.e., electrolysis sludge and consumed HgCl2 catalyst) represent a strong localized emission source of atmospheric Hg0. Near-ground atmospheric Hg0 concentration and soil Hg0 efflux progressively elevated toward the facility with an increase by 2–3 orders of magnitude compared to the values observed in the off-site background. These results suggest that the natural soil surfaces surrounding the closed industrial facility act as a large nonpoint source emitting legacy deposited Hg as much as the release from naturally enriched mines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.