Abstract

Soil is the largest Hg reservoir globally. Data of Hg concentration in surface soil are fundamental to understanding environmental Hg cycling. However, present knowledge on the quantity and global distribution of Hg in soil remains deficient. Using stable Hg isotopic analyses and geospatial data, the concentration and global spatial distribution of Hg in surface soil of 0-20 cm depth have been developed. It is estimated that 1088 ± 379 Gg of Hg is stored in surface soil globally. Thirty-two percent of the surface Hg storage resides in tropical/subtropical forest regions, 23% in temperate/boreal forest regions, 28% in grassland and steppe and shrubland, 7% in tundra, and 10% in desert and xeric shrubland. Evidence from Hg isotopic signatures points to atmospheric Hg0 dry deposition through vegetation uptake as the primary source of Hg in surface soil. Given the influence of changing climate on vegetative development, global climate change can act as an important forcing factor for shaping spatial distribution of Hg in surface soil. This active forcing cycle significantly dilutes the impacts caused by Hg release from anthropogenic sources, and needs to be considered in assessing the effectiveness of reducing Hg use and emissions as specified in Minamata Convention on Mercury.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call