Abstract

There are significant challenges in controlling uniformity of crystal inclination angles, growth orientations and film thicknesses to generate dual-mode surface acoustic waves (e.g., Rayleigh ones and shear-horizontal ones) for lab-on-a-chip applications. In this study, we demonstrate large area (up to three inches) and uniformly inclined piezoelectric ZnO films, sputtering-deposited on silicon using a glancing angle deposition method. Characterization using X-ray diffraction showed that the inclined ZnO films have an average crystal inclination angle of 29.0°, apart from the vertical (0002) orientation, at a substrate tilting angle of 30o. Reflection signals of ZnO/Si surface acoustic wave devices clearly show the generations of both shear horizontal surface acoustic waves and Rayleigh waves. The Rayleigh waves enable efficient acoustofluidic functions including streaming and transportation of sessile droplets. Excitation direction of Rayleigh waves on the acoustofluidics versus the inclined angle direction has apparent influences on the acoustofluidic performance due to the anisotropic microstructures of the inclined films. The same device has been used to demonstrate biosensing of biotin/streptavidin interactions in a liquid environment using the shear-horizontal surface acoustic waves, to demonstrate its potential for integration into a complete lab-on-a-chip device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.