Abstract

The results of the Monte-Carlo ray-tracing simulations for a Johann-type Bragg spectrometer with spherically curved-crystal designed to detect the X-rays from a fast-moving source are reported. These calculations were performed to optimize the X-ray spectrometer to be used at the gas-target installed at ion storage ring for high-resolution X-ray experiments. In particular, the two-dimensional distributions of detected photons were studied using the Monte-Carlo method both for the stationary and moving X-ray sources, taking into account a detailed description of X-ray source and X-ray diffraction on the crystal as well as a role of the Doppler effect for in-beam experiments. The origin of the asymmetry of observed X-ray profiles was discussed in detail and the procedure to derive a precise (sub-eV) X-ray transition energy for such asymmetric profiles was proposed. The results are important for the investigations of 1s2pP23→1s2sS13 intrashell transition in excited He-like uranium ions in in-beam X-ray experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.