Abstract

A method is presented for tracing rays through a medium discretized as finite-element volumes. The ray-trajectory equations are cast into the local element coordinate frame, and the full finite-element interpolation is used to determine instantaneous index gradient for the ray-path integral equation. The finite-element methodology is also used to interpolate local surface deformations and the surface normal vector for computing the refraction angle when launching rays into the volume, and again when rays exit the medium. The procedure is applied to a finite-element model of an optic with a severe refractive-index gradient, and the results are compared to the closed-form gradient ray-path integral approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.