Abstract

JSC "Almalyk MMC" produces products from hard alloys, using as a raw material tungsten concentrate from its own industrial waste - leaching cakes. Another potential resource is tungsten ore from the Ingichki deposit. Objective. It was known that the purity of the raw material and the presence of grain growth inhibitors in the carbide components affected the structure. It was of interest to evaluate the effect of impurities and alloying components of hard alloys on their hardness, wear resistance, and structure. The objects of study were samples of tungsten-containing raw materials, alloying components of hard alloys - compounds of vanadium, rhenium, samples modified by them - hard alloys of the "tungsten carbide - cobalt" type. Methodology. Their physical and mechanical parameters (Rockwell hardness, relative wear resistance), structure (EMPYREAN XDR, SEM-EDS EVO-MA Carl Zeiss Oxford Instrum), elemental composition (ICP-Aligent 7500 IСP MS) were controlled. Results and discussion. Installed. that the hard alloys modified with vanadium and rhenium turned out to be ≈ 3% harder and up to 90-100% more resistant to wear, compared to the serial original unmodified sample. Conclusion. Additional cleaning of tungsten anhydride led to an increase in wear resistance: from 38.5% (alloy “modified with 5% rhenium”, to 57.0% (with a single cleaning) and 65.3% (with three cleanings) of the alloy “modified with 5% rhenium with additional cleaning”, relative to unmodified carbide.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.