Abstract

Membrane based dehumidification technology has attracted wide attention. The anti-hydrolytic property of the membrane holds a significant role in its long-term operation in a wet environment. Herein, a series of fluorinated aromatic polyamides (FPA) are first proposed for stable air-dehumidification. Amide bond offers superior hydrolytic stability over chemical bond in the present dehumidification membrane. The deliberately introduced bulky fluorinated group (-CF3) increases the water permeability and enhances the anti-hydrolytic property of the FPA membranes. The membrane separation performance and membrane stability are further tuned by adjusting the molar ratio of para- and meta-amide groups to optimize the intermolecular forces and polymer chain arrangement, which is verified by the refractive index data and wide-angle X-ray diffraction results. The obtained co-FPA membranes exhibit tunable gas and water vapor permeation properties. With increasing para-amide group content, the gas and water vapor permeability of copolyamides gradually decreases and the selectivity of H2O/N2 increases. Meanwhile, the hydrolytic stability of the co-FPA membranes increases with the increase of TPC content as verified by 1H NMR, GPC, and mechanical property tests. Among these co-FPA membranes, the co-FPA-70 membrane exhibits the most excellent hydrolytic stability. The membrane shows almost no change in 1H NMR spectra and 97% retention of tensile strength after 5000 h of hydrolysis reaction. In the meanwhile, it shows excellent separation stability with a water vapor permeability retention of 74% during long-term hydrolysis aging operation. This study demonstrates the great potential of polyamide for the fabrication of dehumidification membranes with high hydrolysis resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call