Abstract
When introducing acid groups in the diamine monomer for the fabrication of polyamide (PA) membranes through interfacial polymerization (IP), the acid groups not only reduce the diffusion flux of diamine monomer for the polymerization to prepare ultrathin membrane but also provide the negative charges on the membrane surface. However, the introduction of acid groups often weakens the reactivity of diamine monomers, resulting in the formation of thick and loose PA membranes with low rejection of ions. This study proposes a strategy of modulating the IP process of piperazine-2-carboxylic acid (CPIP) by employing an acid acceptor (NaOH) to prepare thin nanofiltration membranes. The acid acceptor can neutralize the HCl to prevent CPIP from being protonated during the IP process, thereby facilitating the cross-linking reaction rate. The thickness of the resulting membrane decreases from 180 nm to 30 nm, accompanied by the fortification of the negative charge, an increase in cross-linking density, and a reduction in pore size. The resulting PA-AA/CPIP_1.0 membrane exhibits a water permeance of 44.6 L m−2 h−1 bar−1, with a significantly increased Na2SO4 rejection of 98.4 % compared with 50.4 % of the PA-AA/CPIP_0 membrane fabricated without acid acceptor. This work may open a new avenue to fabricating high-performance PA membranes for nanofiltration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.