Abstract

Composite electrodes that possess both rational structures and appropriate integration are needed to deliver high electrochemical performance in energy storage devices. In this paper, a flexible and binder-free electrode material based on a heterogeneous core-shell structure of CuCo2O4@Ni(OH)2 nanosheets grown on carbon cloth was fabricated by a simple method. The unique three-dimensional hierarchical structure gives the electrode a large specific surface area, which enables rapid response and increases of specific capacitance. The CuCo2O4@Ni(OH)2/carbon fiber cloth (CFC) composite electrode exhibited a specific capacitance of 2160 F g−1 at 1 A g−1 and a good rate capability energy of 82.7% at 20 A g−1. A flexible all-solid-state asymmetric supercapacitor (FAASC) was assembled with the CuCo2O4@Ni(OH)2/CFC electrode as the positive electrode, and activated carbon (AC)/CFC as the negative electrode. This device showed both a high energy density and power density (58.9 W h kg−1 at a power density of 400 W kg−1), and good long-term cycling stability. Furthermore, the assembled CuCo2O4@Ni(OH)2/CFC//AC/CFC devices were capable of driving a blue light-emitting diode after a short charge. The remarkable performance of this CuCo2O4@Ni(OH)2/CFC electrode indicates that this heterogeneous structure has great potential for applications in flexible high-performance energy storage devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.