Abstract
We consider the zeta and Möbius functions of a partial order on integer compositions first studied by Bergeron, Bousquet-Mélou, and Dulucq. The Möbius function of this poset was determined by Sagan and Vatter. We prove rationality of various formal power series in noncommuting variables whose coefficients are evaluations of the zeta function, ζ , and the Möbius function, μ . The proofs are either directly from the definitions or by constructing finite-state automata. We also obtain explicit expressions for generating functions obtained by specializing the variables to commutative ones. We reprove Sagan and Vatter's formula for μ using this machinery. These results are closely related to those of Björner and Reutenauer about subword order, and we discuss a common generalization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.