Abstract

Making good decisions requires thinking ahead, but the huge number of actions and outcomes one could consider makes exhaustive planning infeasible for computationally constrained agents, such as humans. How people are nevertheless able to solve novel problems when their actions have long-reaching consequences is thus a long-standing question in cognitive science. To address this question, we propose a model of resource-constrained planning that allows us to derive optimal planning strategies. We find that previously proposed heuristics such as best-first search are near optimal under some circumstances but not others. In a mouse-tracking paradigm, we show that people adapt their planning strategies accordingly, planning in a manner that is broadly consistent with the optimal model but not with any single heuristic model. We also find systematic deviations from the optimal model that might result from additional cognitive constraints that are yet to be uncovered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.