Abstract

We propose a generalization of Sullivan’s de Rham homotopy theory to non-simply connected spaces. The formulation is such that the real homotopy type of a manifold should be the closed tensor dg-category of flat bundles on it much the same as the real homotopy type of a simply connected manifold is the de Rham algebra in original Sullivan’s theory. We prove the existence of a model category structure on the category of small closed tensor dg-categories and as a most simple case, confirm an equivalence between the homotopy category of spaces whose fundamental groups are finite and whose higher homotopy groups are finite dimensional rational vector spaces and the homotopy category of small closed tensor dg-categories satisfying certain conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.