Abstract
Based on simulations of passenger transports of two representative types of metro trains in China, this study analyzes efficiencies of energy consumption and passenger transport of a metro train in the effect of its target speed, formation scale (FS) (i.e., length and mass of the formation), relative traction capacity (RTC) (i.e., ratio of the motoring cars to all its cars), and so forth. It is found that increasing energy cost efficiency of a metro train with decreasing its target speed is evidently accelerated with reducing its RTC below 0.50 at the expense of obviously lowering its passenger transport efficiency. Moreover, if the passenger capacity of the train is sufficiently utilized, increasing its FS for the same RTC is easy to have its passenger transport efficiency improved significantly even for a meanwhile much decreased target speed with consuming energy less intensively. Therefore, metro trains in peak hours may take comparatively big FSs, relatively high target speeds, and RTCs over 0.50 to meet usually urgent and large-scale travel demands in such time. In contrast, trains in nonpeak hours ought to have small FSs, relatively low target speeds, and RTCs smaller than 0.50 for mainly avoiding energy waste.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.