Abstract
Electroreduction of CO2 holds the promise for the utilization of CO2 and the storage of intermittent renewable energy. The development of efficient catalysts for effectively converting CO2 to fuels has never been more imperative. Herein, we successfully synthesized Ag2S nanowires (NWs) dominating at the facet of (121) using a modified facile one-step method and utilized them as a catalyst for electrochemical CO2 reduction reaction (CO2RR). Ag2S NWs in ionic liquid (IL) possess a partial current density of 12.37 mA cm–2, ∼14- and ∼17.5-fold higher than those of Ag2S NWs and bulk Ag in KHCO3, respectively. Moreover, it shows significantly higher selectivity with a value of 92.0% at the overpotential (η) of −0.754 V. More importantly, the CO formation begins at a low η of 54 mV. The good performance originates from not only the presence of [EMIM–CO2]+ complexes but also the specific facet contribution. The partial density of states (PDOS) and work functions reveal that the d band center of the surface Ag ato...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.